Tag Archives: Digital Signatures

U.S. Pharma Supply Chain Complexity

© Copyright 2011 Duncan Champney. used with Permission. This image was created with FractalWorks, a high performance fractal renderer for Macintosh computers. FractalWorks is available on the Mac App Store.
© Copyright 2011 Duncan Champney. used with Permission. This image was created with FractalWorks, a high performance fractal renderer for Macintosh computers. FractalWorks is available on the Mac App Store (Click on image).

The debate over pedigree regulatory models in the U.S. pharmaceutical supply chain often centers around how much data for each package of drugs needs to be moved between trading partners as those drugs move down the supply chain from the manufacturer to distributor(s) and ultimately to the pharmacy.  The ideal model would minimize the amount of data moved yet always allow each member of the supply chain to check the prior history—the pedigree—of the drugs they are about to buy.

At a superficial level this appears to be all you need to do, but when you take a closer at the details of how the supply chain actually works in the U.S. you will see that there are other characteristics besides data volume per package that need to be considered.

FOUR VIEWS OF THE U.S. SUPPLY CHAIN

In the debates and discussions over pedigree regulatory models we are used to seeing a view of the supply chain that shows one manufacturer, one distributor and one pharmacy.  That view masks so much important complexity that if we were to select a regulatory model or solution based on that view it would be far from ideal.

Here is a view of the supply chain where the vertical scale shows something closer to the true proportions between those three segments. Continue reading U.S. Pharma Supply Chain Complexity

Electronic Message Security and More on Certifications

Important Notice To Readers of This Essay On November 27, 2013, President Barack Obama signed the Drug Quality and Security Act of 2013 into law. That act has many provisions, but one is to pre-empt all existing and future state serialization and pedigree laws like those that previously existed in California and Florida. Some or all of the information contained in this essay is about some aspect of one or more of those state laws and so that information is now obsolete. It is left here only for historical purposes for those wishing to understand those old laws and the industry’s response to them.

Digital electronic messages can be transmitted from one party to another using a wide range of communications technologies.  Today, businesses that make use of the internet to transmit their business messages to and from their trading partners make use of standards-based Electronic Data Interchange (EDI) message formatting.

EDI messages are typically transmitted point-to-point, from one business to one other business.  There are a large number of EDI message types defined but in the pharmaceutical supply chain the most common messages are purchase orders, purchase order acknowledgments, invoices and advance shipment notices (ASN’s).  (While I have the chance, I’d like to point out that ASN’s are not pedigrees for multiple reasons that I will not cover in this essay.)

In the U.S. pharma supply chain AS2 is the most common communications protocol in use for EDI message exchange.  AS2 provides generalized message security to ensure that the messages cannot be understood or tampered with by unauthorized parties during movement from sender to recipient.  According to Wikipedia, these are achieved through the use of digital certificates and encryption.  Messages can optionally be digitally signed by the sender to provide non-repudiation within the AS2 payload context.

Electronic pedigrees as defined by the states of Florida and California are messages that contain fairly complex legal documentation which describe the chain of custody or ownership of a given package of drugs, but they also contain several types of legally required certifications. Continue reading Electronic Message Security and More on Certifications

Certifications In A California-Compliant Drug Pedigree

Important Notice To Readers of This Essay On November 27, 2013, President Barack Obama signed the Drug Quality and Security Act of 2013 into law. That act has many provisions, but one is to pre-empt all existing and future state serialization and pedigree laws like those that previously existed in California and Florida. Some or all of the information contained in this essay is about some aspect of one or more of those state laws and so that information is now obsolete. It is left here only for historical purposes for those wishing to understand those old laws and the industry’s response to them.I’ve been involved in a number of conversations lately that included differing opinions about what will be necessary to “certify” a drug pedigree in California after their pedigree law goes into effect (2015-2017, depending on your role in the supply chain).  It’s a contentious issue, especially for those who wish that a distributed pedigree model would comply.

The California Law is fairly clear that the pedigree must contain, “A certification under penalty of perjury from a responsible party of the source of the dangerous drug that the information contained in the pedigree is true and accurate.”  And that, among a list of other things, it must include “…the name and address of each person certifying delivery or receipt of the dangerous drug.”

In the California language, a “dangerous drug” is Continue reading Certifications In A California-Compliant Drug Pedigree

The California Pedigree Law

Important Notice To Readers of This Essay On November 27, 2013, President Barack Obama signed the Drug Quality and Security Act of 2013 into law. That act has many provisions, but one is to pre-empt all existing and future state serialization and pedigree laws like those that previously existed in California and Florida. Some or all of the information contained in this essay is about some aspect of one or more of those state laws and so that information is now obsolete. It is left here only for historical purposes for those wishing to understand those old laws and the industry’s response to them.The original California Pedigree Law was passed back in 2004 and it was subsequently modified by the State Legislature in 2006 and again in 2008. In all three instances, I understand that members of the legislature and the Governor’s office worked closely with the State Board of Pharmacy to develop the final content and language.

I heard that one of the goals was to create a better law than the one in Florida. Did they succeed? In order to find out, let’s take a closer look at how they compare.

The law that is currently on the books in California differs from the Florida Pedigree Law in the following ways:

  1. It is fully electronic (it is NOT paper-based)
    The law and all of the discussion of the law by the Board of Pharmacy make it clear that the only acceptable form of a pedigree is electronic. This make it much more reasonable to implement because supply chain members can make use solely of computers to exchange, store and validate pedigrees, without fear that their trading partners can only handle paper pedigrees.
  2. Pharmacy returns must be reflected on pedigrees
    This was an original requirement of the Florida Pedigree Law too, but it was removed under pressure from lobbyists before the law went into effect. So far, it remains intact in California, but the law is not yet in effect. What it means is that when a pharmacy buys drugs from someone and they return those drugs, regardless of how little time has transpired, they must provide a pedigree update so that subsequent buyers of those drugs can see their purchase, and return transactions. This is no different from the requirements faced by all other segments.
  3. It starts with the manufacturer
    In Florida the first wholesaler started the pedigree. In California, the pedigree must be started by the manufacturer or it is not valid. If you are looking to expose the full history of package of drugs, how could you not start with the manufacturer? I even think the manufacturers generally agree with that notion.Interestingly, the Law doesn’t actually require anything of the manufacturers directly. It is directed at wholesalers who are licensed to operate within the state. Distribution of a drug without a pedigree that was started by the manufacturer is illegal and subject to penalties, but it is the wholesaler who violates the law and is punished, not the manufacturer. Thus, if a given manufacturer fails to provide California wholesalers with serialized product and compliant pedigrees by the time the law goes into effect, it will be up to the wholesaler to decide not to distribute those drugs within California in order to avoid violation of the law and avoid the associated penalties. The only risk a manufacturer takes on is that their drugs may no longer reach patients in California (and the subsequent PR firestorm that would follow).
  4. It requires item-level serialization
    California is very clear that they consider the concepts of “electronic track and trace” and “item-level serialization” as being inseparable. That is, if you have one but not the other, then you don’t have a pedigree system. Every drug package must have a unique identifier on it, applied by the manufacturer or repackager, and that UID must be included in the pedigree (the electronic record). This is a substantial difference from the Florida law which has no such requirement.
  5. No holes designed to accommodate special interests
    I’m not aware of any special treatment in the Law for any particular segment of the supply chain. Florida opened several holes that seriously compromise the intent of their law. So far, California has resisted opening holes, unless you consider pushing back the effective date to 2015-2017 a “hole”. 😉

Attentive readers will notice that I have listed these differences in the same order as my list of failures of the Florida Pedigree Law in my earlier post about the Florida Law. This is my way of showing that California has, so far, created a pedigree regulation that does not have any of the major failures of the Florida regulation.

These are the major differences, but what about the common characteristics? Here are the key things that the California Law has in common with the Florida Law:

  • Reliance on Digital Signatures
    Florida allows a pedigree to be created, stored and passed in electronic form, though they don’t require it. But if a Florida pedigree is in electronic form, digital signatures are required for the same purpose as a hand-executed signature on a paper document. The digital signature legally binds the signing person or entity to the content of the electronic document. Florida identified some specific standards that ensure that the digital signatures possess the all-important quality of non-repudiation. The California Pedigree Law does not, itself, specify any standards for digital signatures, but the Board of Pharmacy’s Q&A (see their Q72) calls out the fact that the California Code of Regulations identifies the specific characteristics that must result from a compliant digital signature architecture for electronic documents. The digital signature standards that are compliant in Florida would also be compliant in California.The fact that California included the use of digital signatures is significant because it ensures that each pedigree can stand on its own as a self-contained, self-secure package. This maximizes the value of the entire pedigree architecture because the security mechanism that prevents tampering goes with the package itself. No one has to rely on the access security of a given server or group of servers to prevent tampering. And, if tampering does occur, it can be easily detected, unlike tampering of pedigree approaches that rely solely on server access security. In that case, if server security is breached, you can’t tell which pedigrees were modified and which were not, rendering them all suspicious.
  • It distributes responsibility for monitoring supply chain security to all supply chain participants
    This is the one genius concept of the Florida Law and California retained it, thus qualifying those involved for genius status as well. It’s a regulatory approach that is relatively new but is likely to become much more common in the face of perpetual budget “crises” in state and federal government agencies. Instead of requiring trading partners to simply keep records of their own buying and selling history for each drug so that they can be audited by an inspector at some later date, these laws require them to check the validity of the full pedigree at the time of each purchase transaction, in near real-time.Notice the difference. In the first instance, it is up to the State Board of Pharmacy inspector to detect suspicious activity in the supply chain. But how often will a state inspector visit, and how many records will they be able to review? It’s inconceivable that this approach would result in the detection of illegitimate activity.But when every purchase of a drug as it passes down the supply chain requires the buyer to run a validity check on the full transaction history of that specific bottle, it greatly increases the odds that most suspicious transactions will be detected. And for most suspicious events in the history there will normally be multiple opportunities for detection. Here, digital signatures are the enabling technology. They allow all of this supply chain monitoring activity to occur reliably and automatically inside computers that are distributed throughout the supply chain, without human intervention and without slowing the movement of drugs.

So did California succeed in creating a better law than Florida? I propose that there is almost no comparison so the question may be moot. The California Pedigree Law is so much more far-reaching than the one in Florida. While Florida focused on disrupting some very troublesome practices being performed by a few nefarious licensed and unlicensed wholesalers, California’s law is designed to cause a major reorientation of the pharmaceutical supply chain approach to security, monitoring and policing (see also The Deputized Supply Chain). This has major implications that go well beyond those of the Florida law.

Faced with that, it is not surprising that it was necessary to push out the effective dates to 2015-2017. Transformation this big takes time to implement.

Digital Signatures

Digital signatures are commonly mis-understood, but they play an important role in securing the pharmaceutical supply chain. The Florida pedigree regulations allow the use of digital signatures on electronic pedigrees so that they can be “self-authenticated”. That is, so the pedigree can be authenticated on receipt without employing methods that require some kind of communication with each upstream owner of the drug—like phone calls, faxes, emails, etc.

Digital signatures employed in pedigrees can self-authenticate without any kind of communication. This can be a huge timesaver because it can fully automate the detection of improper supply chain behavior. Large volumes of “clean” pedigrees can be processed without human review or intervention with only those that have a problem being presented to a user for manual review and handling.

It’s not necessary to understand the technical details, but understanding some of the non-technical characteristics of digital signature technology is important for those in the pharmaceutical supply chain. Florida encoded the use of FIPS (Federal Information Processing Standards) digital signature standards directly into their regulations. California seems poised to do something similar.

I want to explain digital signatures without getting too technical. That’s hard to do, but here’s a common misconception that is easy to dispel. The term “digital signature” does not mean something that looks like this:

This is a scanned image of a hand written signature (compliments of a spam/scam email I received this morning). You could call this a “digitized signature”, but it is far from a “digital signature”. The digitized signature may mean something to people when the image is displayed so they can see it, but it means nothing to a computer. Nothing more than a photograph. It’s just a bunch of bits.

A true digital signature is one that a computer can make sense out of. The “sense” it can make is to determine whether the signature is valid or not. For that to work, the digital signature has to be composed of data. Here is an example of a long-form demo digital signature in XML format like those found inside DPMS pedigrees. It includes the core signature as well as the signer’s public key for use in decoding the signature, and a certificate that is digitally signed by a certificate authority who is willing to attest to the signer’s identity.

It looks pretty technical, doesn’t it? It is, but don’t get bogged down in the details. The point is, with this type of data, a computer can verify that a known trusted authority (the certificate authority) is positively willing to attest to the identity of the signer and that the public key included is positively from the signer. The computer can then use the public key to verify that the information being signed (not visible in this example) has not been modified since the signer applied the digital signature. All of this can be determined without the computer needing to go elsewhere for additional information.

Probably the most important thing a digital signature provides is the quality of “non-repudiation”. That is, because the certificate authority has pre-identified the signer in a way that can include the review of legal records, and as long as the signer has kept their private key secret, the signer cannot later claim that they did not sign a set of digital information that bears their digital signature. They cannot disclaim it. The signer is tightly bound to the signed data.

That’s a lot more than your bank can tell from the handwritten signature on your checks. Digital signatures are better in almost all respects.

The FDA, other federal government agencies and most U.S. state governments have embraced the use of digital signatures in digital legal documents. In pedigrees, digital signatures provide strong evidence that the information signed can or cannot be trusted. That’s why they are an obvious choice by regulators who want to move beyond paper pedigrees.

In summary, digital signatures provide the following benefits when used in electronic documents:

  • Positive identification of the signer
  • Non-repudiation of the information that is signed
  • Positive confirmation that the signed information has, or has not been modified since being signed
  • Signature validation can be performed without needing to communicate with external entities

The use of digital signatures in DPMS pedigrees is the feature that turns, what would otherwise be just a blob of data, into a standalone legal document that can be easily validated without needing to acquire any other information. It’s what allows DPMS pedigrees to be used as evidence in court for prosecution of counterfeiters, diverters and thieves.

For a more technical description of digital signatures and the PKI (Public Key Infrastructure) technology behind it, start with the definition in Wikipedia.

Now that I have covered digital signatures in general I can move on to discuss their use in specific pedigree approaches. Stay tuned.